
NATO UNCLASSIFIED

NATO UNCLASSIFIED

NATO STANDARD

AComP-4415

CHARACTERISTICS OF A ROBUST, NON-

HOPPING, SERIAL TONE

MODULATOR/DEMODULATOR FOR

SEVERELY DEGRADED HF RADIO LINKS

Edition A Version 1

MARCH 2015

NORTH ATLANTIC TREATY ORGANIZATION

ALLIED COMMUNICATION PUBLICATION

Published by the

NATO STANDARDIZATION OFFICE (NSO)

© NATO/OTAN

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
2

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFIED

NORTH ATLANTIC TREATY ORGANIZATION (NATO)

NATO STANDARDIZATION OFFICE (NSO)

NATO LETTER OF PROMULGATION

3 March 2015

1. The enclosed Allied Communication Publication AComP-4415, Edition A,
Version 1 - CHARACTERISTICS OF A ROBUST, NON-HOPPING, SERIAL TONE
MODULATOR I DEMODULATOR FOR SEVERELY DEGRADED HF RADIO
LINKS, which has been approved by the nations in the C3B, is promulgated
herewith. The agreement of nations to use this publication is recorded in STANAG
4415.

2. AComP-4415, Edition A, Version 1 is effective upon receipt.

3. No part of this publication may be reproduced, stored in a retrieval system,
used commercially, adapted, or transmitted in any form or by any means, electronic,
mechanical, photo-copying, recording or otherwise, without the prior permission of
the publisher. With the exception of commercial sales, this does not apply to member
nations and Partnership for Peace countries, or NATO commands and bodies.

4. This publication shall be handled in accordance with C-M(2002)60.

3

Edvardas MAZEIKIS
Major General, L TUAF
Director, NATO Standardization Office

Edition A Version 1

NATO UNCLASSIFIED

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
4

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFIED

AComP-4415

 Edition A Version 1

I

NATO UNCLASSIFIED

RESERVED FOR NATIONAL LETTER OF PROMULGATION

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
II

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFIED

AComP-4415

 Edition A Version 1

1

NATO UNCLASSIFIED

RECORD OF RESERVATIONS

CHAPTER RECORD OF RESERVATION BY NATIONS

Note: The reservations listed on this page include only those that were recorded at time of
promulgation and may not be complete. Refer to the NATO Standardization Document
Database for the complete list of existing reservations.

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
2

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFIED

AComP-4415

 Edition A Version 1

3

NATO UNCLASSIFIED

RECORD OF SPECIFIC RESERVATIONS

[nation] [detail of reservation]

Note: The reservations listed on this page include only those that were recorded at time of
promulgation and may not be complete. Refer to the NATO Standardization Document
Database for the complete list of existing reservations.

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
4

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFIED

AComP-4415

 Edition A Version 1

5

NATO UNCLASSIFIED

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 1-1

1.1. BACKGROUND 1-1

1.2. AIM 1-1

1.3. AGREEMENT 1-1

1.4. IMPLEMENTATION OF THE AGREEMENT 1-1

1.5. RELATED DOCUMENTS 1-2

CHAPTER 2 TRANSMISSION FORMAT 2-1

2.1. GENERAL 2-1

2.2. SYNCHRONISATION PREAMBLE PHASE 2-2

2.3. DATA PHASE 2-4

2.4. END OF MESSAGE PHASE 2-6

2.5. CODER AND INTERLEAVER FLUSH PHASE 2-6

CHAPTER 3 3-1

3.1. MINIMUM REQUIRED PERFORMANCE 3-1

ANNEX A ORTHOGONAL MODULATION OF FRAMES A-1

ANNEX B SPECIFICATIONS OF ASSOCIATED COMMUNICATIONS EQUIPMENT B-1

ANNEX C MODEM DIALOGUES &INTERFACES WITH TRANSMITTER RECEIVER C-1
 AND DATA TERMINALS

ANNEX D MODULATOR / DEMODULATOR FILTERING D-1

ANNEX E EXAMPLE MODULATOR C-LANGUAGE IMPLEMENTATION E-1

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
6

NATO UNCLASSIFIED

INTENTIONALLY BLANK

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
1-1

NATO UNCLASSIFIED

CHAPTER 1 INTRODUCTION

1.1. INTRODUCTION

1.1.1. This document describes the transmission format, error correction coding,
and modulation required to ensure interoperability between modems transmitting
data over HF radio links where the user provided data rate is 75 bits per second.
This 75 bits per second modem standard is required for operation in severely
degraded HF channel conditions. Robustness against poor signal to noise ratios,
very severe Doppler spreads and large multipath spreads is provided. The specified
modem waveform incorporates a convolutional FEC combined with a Long (4.8
second) block interleaver which must be used to provide the robust performance
required under these adverse channel conditions. Short and Zero interleaver
settings are also defined to allow the user to trade off performance and end to end
delay, under less severe channel conditions.

1.1.2. The on-air waveform specified in this document is identical to the 75 bps
waveform of Mil-Std-188-110. Modems built to meet the standard specified in this
document will be able to process 75 bps Mil-Std-188-110 transmissions and vice
versa. However, STANAG 4415 modems are required to meet more challenging
multipath delay and Doppler spread performance targets. Having Mil-Std-188-110
and STANAG 4415 on-air interoperability at 75 bps imposes the restriction that there
is no distinction between the zero and short interleaver settings. This means that the
users must ensure that both ends of the link have the same modem configuration
setting (i.e. either short or zero interleaving) for successful communications. To
provide guidance for users, zero interleaving is not recommended for robust
applications or degraded channel conditions.

1.2. AIM

The aim of this agreement is to define the technical interoperability
characteristics for a means of digital communications over severely degraded HF
radio links at an effective bit rate of 75 bits per second.

1.3. AGREEMENT

 The participating nations agree to use the characteristics contained in this
STANAG for their serial tone modems for data communications over severely
degraded HF Radio Links.

1.4. IMPLEMENTATION OF THE AGREEMENT

This STANAG is implemented by a nation when serial tone modems for data

communications at 75 bits per second comply with the characteristics detailed in this
agreement and are placed in service.

Edition A Version 1
1-2

NATO UNCLASSIFIED

1.5. RELATED DOCUMENTS

1.5.1. STANAG 4285 Characteristics of 1200/2400/3600 Bits Per Second Single
Tone Modulators/Demodulators for HF Radio Links.

1.5.2. U.S. MIL-STD 188-110 - Interoperability and Performance Standards for
Data Modems

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
2-1

NATO UNCLASSIFIED

CHAPTER 2 TRANSMISSION FORMAT

2.1. GENERAL

2.1.1. Each data transmission consists of four distinct phases; the
Synchronisation Pre-amble Phase; the Data Phase; the End Of Message (EOM)
Phase; and the Coder - Interleaver Flush Phase. Figure 2.1 shows a block diagram
view of the transmit processing.

Figure 2.1 - Transmit Processing

2.1.2. All phases employ 8-ary Phase Shift Keying of a single 1800Hz sub-carrier.
The modulation of this output carrier should be a constant 2400 symbols per second.
The modulation phases are defined in Table 2.1.

2.1.3. The accuracy of the clock linked with the generation of the sub-carrier
frequency is 1 part in 105, compatible with STANAG 4285.

2.1.4. The Phase Shift of the signal relative to that of the unmodulated sub-carrier
may take on one of the following values.

Symbol
Index

Phase
Shift

In-Phase Quadrature

0 0 1.0 0.0

1 /4 1 / 2 1 / 2

2 /2 0.0 1.0

3 3 /4 -1 / 2 1 / 2

4 -1.0 0.0

5 5 /4 -1 / 2 -1 / 2

6 3 /2 0.0 -1.0

7 7 /4 1 / 2 -1 / 2

Table 2.1 - 8-ary PSK signal space

R 1/2 K=7

Convolutional

Encoder

 Interleaver

Put
Interleaver

Fetch
Symbol

Former
Walsh

Encoder

Input Data

75 bps

EOM

FLUSH

PN Generator

(Data Mode)

Interleaver 1

Interleaver 2

Symbol

Mapper

Preamble Generator

PN Generator

(Sync Mode)

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
2-2

NATO UNCLASSIFIED

Figure 2.2 - Transmit Waveform Generation

2.1.5. The transmitted waveform is generated as illustrated in Figure 2.2. The 8-ary
data stream is converted to the complex 8-PSK resulting in separate In-Phase [I] and
Quadrature [Q] waveforms. These waveforms are independently filtered by
equivalent low pass filters to provide spectral containment. Finally the In-phase and
Quadrature waveforms are used to modulate the 1800 Hz sub-carrier.

2.2. SYNCHRONISATION PREAMBLE PHASE

 Figure 2.1.1 Transmit Structure

Preamble Intlv Blk 1 Intlv Blk 2
...

Intlv Blk N Data, EOM &

Flush

0.6

or

4.8 Sec.

0.6

or

4.8 Sec.

0.6

or

4.8 Sec.

0.6

or

4.8 Sec.

Variable

Length

SF1 SF2 SF3 ...

SFm

0 1 3 0 1 3 1 2 0 D1 D2 C1 C2 C3 0

0.2 Sec.

LPF

Symbol

Mapper

LPF

Cos (2 (1800) t)

-Sin(2 (1800) t)

 X

 X

 +

2400

symbols

/second

I

Q

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
2-3

NATO UNCLASSIFIED

2.2.1. As shown in Figure 2.1.1, the preamble phase consists of the transmission of
a number of preamble superframes. 24 preamble superframes are sent for the Long
interleaver mode, 3 are sent in both the Short and Zero interleaver modes. Each
preamble superframe consists of the transmission of 15 orthogonally modulated
frames. Frames are orthogonally modulated using Walsh functions and are a total of
32 symbols in duration. This process is described in Appendix 1 of ANNEX A.

2.2.2. The duration of the preamble phase is equal to that of an interleaver block.
This allows the modem to fill the interleaver block while transmitting the preamble.
This ensures that transmit data is available at the end of the preamble transmission.

2.2.3. Each preamble superframe consists of the following frame sequence

0,1,3,0,1,3,1,2,0,D1,D2,C1,C2,C3,0

D1 and D2, (used to identify the data rate and interleaver setting in MIL-STD-188-
110), are represented as tribit numbers and are fixed as specified in Table 2.1.1.
Note that the implementation does not distinguish between Zero and Short
interleaver settings. This is a modem configuration item that must be set up by the
user.

Mode D1 D2

STANAG 4415 - Zero 7 5

STANAG 4415 - Short 7 5

STANAG 4415 - Long 5 5

Table 2.1.1 - Preamble D1 D2 symbols

2.2.4. C1,C2, and C3 represent a count which is decremented for each
transmission of the preamble superframe. As stated previously, this preamble
superframe is repeated 24 times for Long interleaver setting and is repeated 3 times
for the Zero and Short interleaver settings. The count specified by C1 C2 and C3
starts at either 23 or 2. The values of C1, C2, and C3 are represented as tribit
numbers as shown in Table 2.1.2.

Count C1 C2 C3

23 (010111) 5 5 7

22 (010110) 5 5 6

21 (010101) 5 5 5

20 (010100) 5 5 4

19 (010011) 5 4 7

18 (010010) 5 4 6

17 (010001) 5 4 5

16 (010000) 5 4 4

15 (001111) 4 7 7

14 (001110) 4 7 6

13 (001101) 4 7 5

12 (001100) 4 7 4

11 (001011) 4 6 7

10 (001010) 4 6 6

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
2-4

NATO UNCLASSIFIED

9 (001001) 4 6 5

8 (001000) 4 6 4

7 (000111) 4 5 7

6 (000110) 4 5 6

5 (000101) 4 5 5

4 (000100) 4 5 4

3 (000011) 4 4 7

2 (000010) 4 4 6

1 (000001) 4 4 5

0 (000000) 4 4 4

Table 2.1.2 - Preamble C1 C2 C3 symbols

2.3. DATA PHASE

2.3.1. The data phase consists of the sequential operations of convolutional
encoding, interleaver put, interleaver fetch, symbol formation, and frame modulation.
The processing flow is illustrated in Figure 2.1. Note that two interleaver buffers are
used. While one buffer is being filled, the other buffer is being emptied.

2.3.2. Convolutional Encoder - Figure 2.2.1 displays the structure of the K=7, rate
1/2 convolutional encoder utilised for FEC. The polynomial corresponding to output
b0 is X6 + X4 + X3 + X + 1, the polynomial corresponding to output b1 is X6 + X5 + X4
+ X3 +1. A single input bit results in the bit pair b0, b1 being generated.

Figure 2.2.1 - Rate 1/2 K=7 Convolutional Encoder

2.3.3. Interleaver Put - The interleaver shall be a matrix block type which operates
upon input bits. The matrix size shall accommodate 4.8 (Long) or 0.6 (Short)

X6 X5 X4 X3 X2 X 1

 +

 +

Input

75bps

b0

b1

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
2-5

NATO UNCLASSIFIED

seconds of message bits . If the Zero interleaver setting is selected the interleaver
will be bypassed. The dimensions of the interleaver structure are specified in the
following table:

Transmit Mode Number Of Rows Number Of Columns

STANAG 4415 - Short 10 9

STANAG 4415 - Long 20 36

Table 2.2.1 - Interleaver Dimensions

2.3.4. Because the bits are loaded and fetched in different orders, two distinct
interleaver matrices will be required. One structure will always be filling while the
other is being emptied.

2.3.5. The output bits of the encoder shall be loaded into the interleaver matrix
starting at column 0 as follows: The first bit (b0) is loaded into row 0, the next bit (b1)
is loaded into row 7, the third bit (b0), generated from the second encoder input bit,
is loaded into row 14 and the fourth bit (b1) is loaded into row 1. Thus the row
location for the bits increases by 7 modulo (Number of Rows). This process
continues until all rows are loaded. The load then advances to column 1 and the
process is repeated until the entire matrix block is filled.

2.3.6. Interleaver fetch - The fetching sequence shall start with the first bit being
taken from row 0, column 0. The location of each successive fetched bit shall be
determined by incrementing the row by 1 and decrementing the column number by 7
(modulo the number of columns in the interleaver matrix) . The interleaver fetch
shall continue until the row number reaches its maximum value. At this point the row
number shall be reset to 0, the column number is set to be 1 larger than the value it
had when the row number was last 0 and the process continued until the entire
matrix is unloaded.

2.3.7. Symbol formation - pairs of bits from the interleaver fetch are mapped into 2
bit symbols as shown in Table 2.2.2.

Bits from Interleaver Transmitted dibit

First Bit Last Bit

0 0 00

0 1 01

1 0 11

1 1 10

Table 2.2.2 - Symbol Formation

2.3.8. Frame Modulation - The transmit dibit, specified in Table 2.2.2, is next used
to modulate a frame as detailed in ANNEX A.
2.3.9. The end of every transmitted interleaver block is identified by slightly altering
the transmit dibit to a tribit by adding 4. This results in an alternate set of Walsh
functions being used for the frame modulation. This is done to identify the end of a
interleaver block; allowing synchronisation on the data portion of the waveform even
if the preamble is missed.

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
2-6

NATO UNCLASSIFIED

2.4. END OF MESSAGE PHASE

2.4.1. After all the user message bits have been processed, as outlined in the data
mode, the 32 bit End Of Message sequence is processed by the encoder and
interleaver. The 32 bit EOM sequence is defined as:

0,1,0,0,1,0,1,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,1,1,0,0,1,0

2.4.2. The bits above are processed left to right, and they are treated as input data
to the system (see Figure 2.1).

2.5. CODER AND INTERLEAVER FLUSH PHASE

After the 32 bit EOM sequence has been processed 144 0 bits are injected
into the encoder / interleaver. These 144 bits allow the encoder to be brought to a
known state and provide additional bits to flush the decoder. After the 144 0’s have
been processed additional zero’s are injected into the encoder until the current
interleaver block is filled so that it can be emptied and transmitted.

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
3-1

NATO UNCLASSIFIED

CHAPTER 3 MINIMUM REQUIRED PERFORMANCE

3.1. MINIMUM REQUIRED PERFORMANCE

3.1.1. The performance specified in the following paragraphs is required when the
modem is operating in the long interleaver mode. The HF simulator used shall be in
accordance with CCIR Report 549-3. Doppler spread shall be Gaussian and
specified as a 2 Sigma power bandwidth. Signal and noise powers shall be
measured in a 3 kHz bandwidth.

3.1.2. Single Path, non-fading - The modem shall achieve a BER<10-3 at -9.00 dB
SNR (3kHz) in an additive white Gaussian noise environment.

3.1.3. Dual Path, Multipath delay = 10.0ms. - The modem shall achieve a BER < 10-

4 at the following SNRs (3kHz).

Doppler Spread
(both paths) (Hz)

Required
SNR[dB] to
achieve 10-4BER

0.5 0.0

1.0 -1.0

2.0 -1.0

5.0 -1.0

10.0 -1.0

20.0 -1.0

30.0 -1.0

40.0 -0.5

50.0 0.0

 Table 3.1 - Fading Multipath Performance

3.1.4. Delay Spread Tolerance - The modem shall be capable of achieving
synchronisation and providing BER of less than 10-5 for multipath delay spreads up
to 10 milliseconds in a 0 dB SNR channel with Doppler spreads of 2 Hz and 20 Hz.

3.1.5. Interference Tolerance - Table 3.2 specifies Signal to Interference Ratio
(SIR) that shall be accommodated by the modem while maintaining a BER of 10-4 for
several different types of interference. In order to obtain the stated performance it
may be necessary to implement excision filters in the demodulator.

Interference Type
1 path non-fading
SNR = +10dB

Details SIR
required to
achieve 10-4BER

Swept CW Triangular sweep 0-3000 Hz, 150
Hz / second

≥ -40 dB

FSK - WS 75bps 1575, 2425 Hz ≥ -40 dB

Table 3.2 - Interference Performance

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
3-2

NATO UNCLASSIFIED

3.1.6. Doppler Shift Tolerance - The modem shall be capable of achieving
synchronisation and providing a BER of less than 10-5 for Doppler shifts up to +/- 75
Hertz on a single fading path with 0 dB SNR and 2 Hertz Doppler spread.

3.1.7. Doppler Sweep Tolerance - The modem shall be capable of achieving
synchronisation and providing a BER of less than 10-5 for a continuous linear Doppler
sweep between +/- 75 Hz at a rate of 3.5 Hz/s for a single non-fading path with a 0
dB SNR.

NATO UNCLASSIFIED

Annex A to AComP-4415

Edition A Version 1
A-1

NATO UNCLASSIFIED

ANNEX A ORTHOGONAL MODULATION OF FRAMES

1. All data is transmitted as frames. Each frame is completely defined by
specifying the underlying 32 symbol 8-PSK base pn sequence and the
orthogonal modulation index 0-7. The base pn sequence is used as a
scrambling sequence so that the transmitted waveform always appears noise-
like in nature in-dependent of the actual user transmitted data. The
modulation is accomplished by the modulo 8 addition of selected Walsh
functions and the underlying 8-PSK base pn sequence.

2. The following base pn sequence is utilised in the generation of
preamble synchronisation frames:

7,4,3,0,5,1,5,0,2,2,1,1,5,7,4,3,5,0,2,6,2,1,6,2,0,0,5,0,5,2,6,6

where each integer 0-7 corresponds to a phase of 8-PSK as specified in
Table 2.1.

3. Data frames are generated from the following 160 symbol sequence,
taken 32 at a time, repeated after every 5 frames:

0,2,4,3,3,6,4,5,7,6,7,0,5,5,4,3,5,4,3,7,0,7,6,2,6,2,4,6,7,2,4,7,
5,5,7,0,7,3,3,3,7,3,3,1,4,2,3,7,0,2,7,7,3,5,1,0,1,4,0,5,0,0,0,0,
7,5,1,4,5,4,2,0,6,1,4,7,5,0,1,0,3,0,3,1,3,5,1,2,5,0,1,7,1,4,6,0,
2,3,3,4,2,5,2,5,4,5,7,3,1,0,1,6,4,1,1,2,1,4,1,5,4,2,7,4,5,1,6,4,
6,3,6,4,5,0,3,6,4,0,1,6,3,3,5,7,0,5,7,7,2,5,2,7,7,4,7,5,5,0,5,6,

where each integer 0-7 corresponds to a phase of 8-PSK as specified in
Table 2.1.

4. Table A-1.1 specifies the orthogonal Walsh functions used in the
frame modulation. The first set of four are used for all preamble frames
except D1, D2, C1, C2, and C3 and for all data frames except the last frame
of each interleaver block. The second set, represented by the input tribit, are
used for modulation of the preamble frames D1, D2, C1, C2, C3 and for the
last data frame of each interleaver block.

NATO UNCLASSIFIED

Annex E to AComP-4415

Edition A Version 1
E-2

NATO UNCLASSIFIED

Orthogonal Modulation
Index

Walsh Function

Input dibit

0 (00) 0 0 0 0 0 0 0 0

1 (01) 0 1 0 1 0 1 0 1

2 (10) 0 0 1 1 0 0 1 1

3 (11) 0 1 1 0 0 1 1 0

Input tribit

4 (100) 0 0 0 0 1 1 1 1

5 (101) 0 1 0 1 1 0 1 0

6 (110) 0 0 1 1 1 1 0 0

7 (111) 0 1 1 0 1 0 0 1

Table A-1.1 - Orthogonal Modulation

5. The frame modulation is accomplished by taking the Walsh function
specified by the orthogonal modulation index and repeating it 4 times. This
results in a 32 element sequence which is then used to modulate the
specified base pn sequence. This modulation is accomplished by rotating
each 8-ary PSK symbol of the base pn sequence by 180 degrees if the
corresponding Walsh function element is a 1, and leaving it unaltered if the
Walsh element is a 0.

6. Table A-1.1 shows Walsh Functions for Input “tribits”. These functions
represent an alternate set of Walsh Functions that are used for the last frame
of each interleaver block. This operation is used to support synchronisation
on data.

7. EXAMPLE#1: Frame Modulation of the second frame of the preamble
superframe.

Here, the frame data is specified as 1 and the base pn sequence is as
defined in 1(b) above.

Walsh Index 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Base PN 7,4,3,0,5,1,5,0,2,2,1,1,5,7,4,3,5,0,2,6,2,1,6,2,0,0,5,0,5,2,6,6
Transmitted 7,0,3,4,5,5,5,4,2,6,1,5,5,3,4,7,5,4,2,2,2,5,6,6,0,4,5,4,5,6,6,2

8. EXAMPLE#2: Frame Modulation of a standard data frame using the
3rd base pn sequence.

Assume the dibit, as specified in Table A-1.1 is 3.

Walsh Index 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
Base PN 7,5,1,4,5,4,2,0,6,1,4,7,5,0,1,0,3,0,3,1,3,5,1,2,5,0,1,7,1,4,6,0,

NATO UNCLASSIFIED

Annex A to AComP-4415

Edition A Version 1
A-3

NATO UNCLASSIFIED

Transmitted 7,1,5,4,5,0,6,0,6,5,0,7,5,4,5,0,3,4,7,1,3,1,5,2,5,4,5,7,1,0,2,0,

9. EXAMPLE#3: Frame Modulation of the last data frame of the
interleaver block using the 1st base pn sequence.

Assume the dibit, as specified in Table A-1.1 is 3. This results in the tribit 7
being used.

Walsh Index 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
Base PN 0,2,4,3,3,6,4,5,7,6,7,0,5,5,4,3,5,4,3,7,0,7,6,2,6,2,4,6,7,2,4,7,

Transmitted 0,6,0,3,7,6,4,1,7,2,3,0,1,5,4,7,5,0,7,7,4,7,6,6,6,6,0,6,3,2,4,3,

NATO UNCLASSIFIED

Annex B to AComP-4415

Edition A Version 1
B-1

NATO UNCLASSIFIED

ANNEX B SPECIFICATIONS OF ASSOCIATED COMMUNICATIONS

EQUIPMENT

1. The transmitter and receiver specifications must be in accordance with

Appendix 1 to Annex A to STANAG 4285 for the robust serial tone modulator/

demodulator to perform adequately.

NATO UNCLASSIFIED

ANNEX C to AComP-4415

Edition A Version 1
C-1

NATO UNCLASSIFIED

ANNEX C MODEM DIALOGUES AND INTERFACES WITH TRANSMITTER,

RECEIVER AND DATA TERMINALS

(Information)

1. Modem dialogues and interfaces with transmitter, receiver, and data

terminals are described in Appendix 2 of Annex A to STANAG 4285. Additional

information on this subject is available in Annex F to STANAG 4481. It should be

noted that baud and frame rates specified in this STANAG differ from those of

STANAG 4285 and, as a consequence, adjustment must be made to clock signals

for “frame transmission” and “frame reception”.

NATO UNCLASSIFIED

ANNEX D to AComP-4415

Edition A Version 1
D-1

NATO UNCLASSIFIED

ANNEX D MODULATOR/DEMODULATOR FILTERING

(Information)

1. The forming filters used by the modulator, depicted in Figure 2.1, and the

demodulator should meet the following criteria.

(a) The reception filter should be matched to the transmission filter (to

maximise the signal-to-noise ratio in the demodulator).

(b) Putting the transmission and reception filters in series should form a filter

minimising inter-symbol interference at the demodulator. A root-raised

cosine filter will satisfy the necessary requirements.

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
E-1

NATO UNCLASSIFIED

ANNEX E EXAMPLE MODULATOR - C LANGUAGE IMPLEMENTATION

/**

 This program implements the MIL_STD-188-110 75bps Modulator.
 It supports all interleaver modes; zero, short, and long.
 The output is generated as an ASCII file containing the transmitted 8-PSK
 symbols as denoted by the integers 0-7, which correspond to the 8-PSK
 signalling phases of 0, 45, 90, 135, 180, 225, 270 and 315 degrees.

**/

#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <math.h>

float pi = M_PI;

int baud,interleaver;
int baud_ind, ilv_ind;
long i,numtxbits;
int fullflag;
int walsh_data;

float tx_buffer[500];

/***
*************** Modem Transmit Data Structures **************************
***/

/* Base PN sequence for Data Mode */
int dataPN[5][32] = { {0,2,4,3,3,6,4,5,7,6,7,0,5,5,4,3,
 5,4,3,7,0,7,6,2,6,2,4,6,7,2,4,7},
 {5,5,7,0,7,3,3,3,7,3,3,1,4,2,3,7,
 0,2,7,7,3,5,1,0,1,4,0,5,0,0,0,0},
 {7,5,1,4,5,4,2,0,6,1,4,7,5,0,1,0,
 3,0,3,1,3,5,1,2,5,0,1,7,1,4,6,0},
 {2,3,3,4,2,5,2,5,4,5,7,3,1,0,1,6,
 4,1,1,2,1,4,1,5,4,2,7,4,5,1,6,4},
 {6,3,6,4,5,0,3,6,4,0,1,6,3,3,5,7,
 0,5,7,7,2,5,2,7,7,4,7,5,5,0,5,6}};

/* Random 63 bit Data sequence */
int pn63[63] ={0,0,0,0,1,1,0,0,0,1,0,1,0,0,1,1,
 1,1,0,1,0,0,0,1,1,1,0,0,1,0,0,1,
 0,1,1,0,1,1,1,0,1,1,0,0,1,1,0,1,
 0,1,0,1,1,1,1,1,1,0,0,0,0,0,1};

/* Base PN sequence for Preamble mode */
int preamblePN[32] = {7,4,3,0,5,1,5,0,2,2,1,1,5,7,4,3,
 5,0,2,6,2,1,6,2,0,0,5,0,5,2,6,6};

NATO UNCLASSIFIED

Annex E to AComP-4415

Edition A Version 1
E-2

NATO UNCLASSIFIED

struct modem_tx_state_S {
 enum tx_mode_E { NULL_TX,PREAMBLE,DATA, EOM,FLUSH } tx_mode;
 enum int_deint_E { ZERO_TX, SHORT_TX, LONG_TX } int_deint;
};
struct modem_tx_state_S modem_tx_state = { 0,1 };

/* Preamble data structure */
struct preamble_S {
 int synch_frame[15];
 int sym_cnt;
 int epoch_cnt;
};
struct preamble_S preamb = { {0,1,3,0,1,3,1,2,0,0,0,0,0,0,0},
 0,0};

int preDone;

/* 8-ary Walsh function modulation array */
int mm_walsh[8][8] = { {0,0,0,0,0,0,0,0},
 {0,4,0,4,0,4,0,4},
 {0,0,4,4,0,0,4,4},
 {0,4,4,0,0,4,4,0},
 {0,0,0,0,4,4,4,4},
 {0,4,0,4,4,0,4,0},
 {0,0,4,4,4,4,0,0},
 {0,4,4,0,4,0,0,4}};

/* End Of Message sequence */
eomseq[32] = {0,1,0,0,1,0,1,1,0,1,1,0,0,1,0,1,
 1,0,1,0,0,1,0,1,1,0,1,1,0,0,1,0};

/* Gray Encoder array - used in 75 bps */
int mgd[4] = { 0,1,3,2};

/* Baud and interleaver specific transmit parameters */
struct tx_param_S {
 int d1;
 int d2;
 int pre_cnt;
 int bits_per_sym;

 };

struct tx_param_S tx[1][3] = { 7, 5, 2, 2 ,
 7, 5, 2, 2 ,
 5, 5, 23, 2};

/***
 Encoder Data Structures
***/
int encode_state = 0;
int encoded_bit[2];

int encoder_tab[64] = {0,1,3,2,3,2,0,1,0,1,3,2,3,2,0,1,

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
E-3

NATO UNCLASSIFIED

 2,3,1,0,1,0,2,3,2,3,1,0,1,0,2,3,
 3,2,0,1,0,1,3,2,3,2,0,1,0,1,3,2,
 1,0,2,3,2,3,1,0,1,0,2,3,2,3,1,0};

/***/
/** Interleaver Data Structures **/
/***/

int imem[40*576];

struct ilv_param_S {
 int num_rows;
 int num_cols;
 int size;
 int symbols_per_block;
 int put_row_b;
 int get_col_b;
 };

struct ilv_var_S {
 int put_pos;
 int get_pos;
 int put_row_cnt;
 int put_col_cnt;
 int get_row_cnt;
 int get_col_cnt;
 int old_get_col_cnt;
};

struct ilv_var_S ilv_var = { 0,0,0,0,0,0,0};

struct ilv_param_S ilv[1][3] = {
 /* 75 Z */ 10, 9, 90, 45, 1, 0,
 /* 75 S */ 10, 9, 90, 45, 7, -7,
 /* 75 L */ 20, 36, 720, 360, 7, -7
 };

/**
 Function Declaration
**/

void transmit_init(void);
int preamble(void);
void modulator(int walsh, int xmit_sym_cnt , float *out_P);
int interleav_put(int inbit);
int interleav_get(void);
void encode(int input_bit);
void interleaver_process75(void);

/***
 Start Of Main Program
***/

/* The main program is implemented as a series of sections dealing with
 PREAMBLE, DATA, EOM, and FLUSH phases of the transmit waveform.
 A single interleaver block is employed, this is filled

NATO UNCLASSIFIED

Annex E to AComP-4415

Edition A Version 1
E-4

NATO UNCLASSIFIED

 with encoded data, once filled the entire interleaver block is
 converted to transmit waveform. This approach, while acceptable for
 a non real-time implementation should be altered to be frame based for
 real-time operation. */

FILE *pskout;

void main()
{
char intstr[2];

 printf("MIL-STD 188-110 - 75bps Transmit Model\n\n");

 /* Initialization here */

 modem_tx_state.tx_mode = NULL_TX;

 pskout = fopen("pskout","w");

 /* NULL_TX */

 baud = 75;
 baud_ind = 0;

 printf("Enter Interleaver (L)ong (S)hort (Z)ero ");
 scanf("%s", &intstr);

 if((intstr[0] == 'L') || (intstr[0] == 'l'))
 modem_tx_state.int_deint = LONG_TX;

 if((intstr[0] == 'S') || (intstr[0] == 's'))
 modem_tx_state.int_deint = SHORT_TX;

 if((intstr[0] == 'Z') || (intstr[0] == 'z'))
 modem_tx_state.int_deint = ZERO_TX;
 ilv_ind = modem_tx_state.int_deint;

 printf("Enter number of bits to transmit ");
 scanf("%ld",&numtxbits);

 transmit_init();

 modem_tx_state.tx_mode = PREAMBLE;

/***/
 /* PREAMBLE*/
/***/
 /* This section utilizes the preamble state machine function to generate
 all transmitted symbols of the preamble */

 printf("Generating Preamble\n");
 while (modem_tx_state.tx_mode == PREAMBLE)
 {
 preDone = preamble();
 modulator(walsh_data, 5 , tx_buffer);

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
E-5

NATO UNCLASSIFIED

 if(preDone == 1) modem_tx_state.tx_mode = DATA;
 }

/***/
 /* DATA */
/***/

 /* This section generates the user data portion of the waveform. In this
 example the data is taken from the pn63 array which stores the 63 bit ML
 PN sequence used by many Bit Error Rate Test Sets. */

 printf("Generating data waveform\n");
 for(i=0;i<numtxbits;i++)
 {
 encode(pn63[i%63]);

 interleav_put(encoded_bit[0]);
 fullflag = interleav_put(encoded_bit[1]);

 if(fullflag == 1)
 {
 printf("interleaver full at %ld\n", i);
 interleaver_process75();
 }

 }

/***/
 /* EOM */
/***/

 /* This section transmits the 32 bit End Of Message Sequence */

 printf("Generating EOM\n");
 for(i=0;i<32;i++)
 {
 encode(eomseq[i]);
 interleav_put(encoded_bit[0]);
 fullflag = interleav_put(encoded_bit[1]);

 if(fullflag == 1)
 {
 printf("interleaver full at %ld\n", i);
 interleaver_process75();
 }
 }

/***/
 /* FLUSH */
/***/

 /* This section transmits the 144 '0' flush bits */

NATO UNCLASSIFIED

Annex E to AComP-4415

Edition A Version 1
E-6

NATO UNCLASSIFIED

 printf("Generating Flush bits\n");
 for(i=0;i<144;i++)
 {
 encode(0);
 interleav_put(encoded_bit[0]);
 fullflag = interleav_put(encoded_bit[1]);
 if(fullflag == 1)
 {
 printf("interleaver full \n");
 interleaver_process75();
 }

 }

 /* This section continues to transmit '0' until the current interleaver
 block is full */

 while(fullflag == 0)
 {
 encode(0);
 interleav_put(encoded_bit[0]);
 fullflag = interleav_put(encoded_bit[1]);
 if (fullflag == 1)
 {
 printf("interleaver full \n");
 interleaver_process75();
 }
 }

 fclose(pskout);

/***/
void transmit_init() {
/***/

/* This function initializes the preamble symbols which convey the selected
 baud rate and interleaver setting and also initializes the number of
 preamble superframe transmissions. */

 preamb.synch_frame[9] = tx[baud_ind][ilv_ind].d1;
 preamb.synch_frame[10] = tx[baud_ind][ilv_ind].d2;
 preamb.sym_cnt=0;
 preamb.epoch_cnt=tx[baud_ind][ilv_ind].pre_cnt;

}

/***/
int preamble(void)
/***/

/* This function implements the preamble state machine. The next preamble

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
E-7

NATO UNCLASSIFIED

 symbol to transmit is calculated and the preamble count symbols are
 recalculated each preamble epoch time. */
{
int done=0;

 walsh_data = preamb.synch_frame[preamb.sym_cnt];
 printf("%d ",preamb.synch_frame[preamb.sym_cnt]);

 preamb.sym_cnt++;

 /* Calculate the preamble count symbols */
 if(preamb.sym_cnt == 11)
 {
 preamb.synch_frame[11] = ((preamb.epoch_cnt>>4) & 0x03) +4;
 preamb.synch_frame[12] = ((preamb.epoch_cnt>>2) & 0x03) +4;
 preamb.synch_frame[13] = ((preamb.epoch_cnt) & 0x03) +4;
 }
 /* If all 15 symbols of the preamble have been sent set up for
 the next set */

 if(preamb.sym_cnt == 15)
 {
 preamb.sym_cnt = 0;
 preamb.epoch_cnt--;

 printf("\n");

 if(preamb.epoch_cnt < 0)
 {
 done = 1;

 }
 }
 return (done);
}

/**/
void modulator(int walsh, int xmit_sym_cnt , float *out_P)
/**/
/*
 This function performs the Walsh function modulation. The modulation is
 achieved by XORing the scramble sequence with the Walsh function,
 represented as 0's and 4's.
*/
{

int i,mod_pn[32];

 for(i=0;i<32;i++)
 {
 if (modem_tx_state.tx_mode == PREAMBLE)
 mod_pn[i] = preamblePN[i] ^ mm_walsh[walsh][i%8];
 else
 mod_pn[i] = dataPN[xmit_sym_cnt][i] ^ mm_walsh[walsh][i%8];
 fprintf(pskout,"%d\n",mod_pn[i]);
 }

}

NATO UNCLASSIFIED

Annex E to AComP-4415

Edition A Version 1
E-8

NATO UNCLASSIFIED

/**/
void encode(int input_bit)
/**/

/* This function implements the Rate 1/2, k = 7 convolutional encoder by means
 of the encoder_tab look up table.
*/

{

int temp;

 if (input_bit){
 temp = encoder_tab[encode_state] ^ 0x03;
 }
 else{
 temp = encoder_tab[encode_state];
 }

 encode_state = ((encode_state<<1) + input_bit) & 0x3F;

 encoded_bit[0] = (temp>>1)&0x01;
 encoded_bit[1] = temp&0x01;
}

/***/
int interleav_put(int inbit) {
/***/

/* This function loads the passed input bit into the interleaver structure
 and modifies the address variables.
*/

 imem[ilv_var.put_pos]=inbit;
 ilv_var.put_pos = (ilv_var.put_pos +ilv[baud_ind][ilv_ind].put_row_b
 *ilv[baud_ind][ilv_ind].num_cols) % ilv[baud_ind][ilv_ind].size;
 ilv_var.put_row_cnt++;
 if(ilv_var.put_row_cnt == ilv[baud_ind][ilv_ind].num_rows)
 {
 ilv_var.put_row_cnt=0;
 ilv_var.put_pos=ilv_var.put_col_cnt+1;
 ilv_var.put_col_cnt++;
 if(ilv_var.put_col_cnt == ilv[baud_ind][ilv_ind].num_cols)
 {
 ilv_var.put_col_cnt=0;
 ilv_var.put_row_cnt=0;
 ilv_var.put_pos=0;
 return(1);
 }
 }
 return(0);
}

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1
E-9

NATO UNCLASSIFIED

/***/
int interleav_get() {
/***/

/* This function fetches the next bit out of the interleaver structure
 and modifies the address variables.
*/

int outbit;

 outbit = imem[ilv_var.get_pos];
 ilv_var.get_row_cnt++;
 ilv_var.get_col_cnt += ilv[baud_ind][ilv_ind].get_col_b;
 if(ilv_var.get_col_cnt <0)
 ilv_var.get_col_cnt += ilv[baud_ind][ilv_ind].num_cols;

 if (ilv_var.get_row_cnt == ilv[baud_ind][ilv_ind].num_rows)
 {
 ilv_var.get_row_cnt =0;
 ilv_var.get_col_cnt = ilv_var.old_get_col_cnt+1;
 if(ilv_var.get_col_cnt == ilv[baud_ind][ilv_ind].num_cols)
 {
 ilv_var.get_col_cnt=0;
 }

 ilv_var.old_get_col_cnt = ilv_var.get_col_cnt;
 }
 ilv_var.get_pos = ilv_var.get_row_cnt*ilv[baud_ind][ilv_ind].num_cols
 +ilv_var.get_col_cnt;

 if(ilv_var.get_pos == 0) printf("Interleaver emptied\n");

 return(outbit);
}

/***/
void interleaver_process75() {
/***/

/* This function processes a filled interleaver block */

int j,jj;
int a;
static mod_cntr=0;

 for(j=0;j<ilv[baud_ind][ilv_ind].symbols_per_block;j++){
 a=0;
 for(jj=0;jj<2;jj++)
 {
 a=(a<<1)+interleav_get();
 }

 a=mgd[a];
 if ((modem_tx_state.int_deint == ZERO_TX) && (mod_cntr == 44)) a +=4;
 if ((modem_tx_state.int_deint == SHORT_TX) && (mod_cntr == 44)) a +=4;
 if ((modem_tx_state.int_deint == LONG_TX) && (mod_cntr == 359)) a +=4;

NATO UNCLASSIFIED

Annex E to AComP-4415

Edition A Version 1
E-10

NATO UNCLASSIFIED

 modulator(a, mod_cntr % 5 , tx_buffer);

 mod_cntr++;

 }

 mod_cntr = 0;
}

NATO UNCLASSIFIED

AComP-4415

Edition A Version 1

NATO UNCLASSIFIED

INTENTIONALLY BLANK

 NATO UNCLASSIFIED

AComP-4415 (A)(1)

